วันเสาร์ที่ 24 ตุลาคม พ.ศ. 2563

ข้อสอบ บทที่ 3 พันธะเคมี

1.จำนวนพันธะโคเวเลนต์ในโมเลกุล CH4 , SiCl4 , NaCl , NH3 เป็นกี่พันธะมีค่าเรียงตามลำดับ  คือข้อใด
   ก. 4 , 4 , 0 , 3     ข. 6 , 3 , 1 , 0       ค. 4 , 3 , 0 , 3      ง. 5 , 4 , 1 , 0

2. พันธะเดี่ยว หมายถึงอะไร
    ก. พันธะที่เกิดจากการใช้เวเลนซ์อิเล็กตรอนร่วมกัน 1 คู่
    ข. พันธะที่เกิดจากการใช้เวเลนซ์อิเล็กตรอนร่วมกัน 2 คู่
    ค. พันธะที่เกิดจากการใช้เวเลนซ์อิเล็กตรอนร่วมกัน 3 คู่
    ง. พันธะที่เกิดจากการใช้์อิเล็กตรอนคู่โดดเดี่ยวร่วมกัน 1 คู่

3. ธาตุในข้อใด เกิดพันธะโคเวเลนต์กับธาตุคลอรีนได้ดีที่สุด

    ก. Na                ข. Ra             ค. C                 ง. Cs

4. สมบัติทางกายภาพในข้อใด ที่ใช้อธิบายสมบัติทางเคมีของอโลหะ
    ก. พลังงานไอออไนเซชันสูง ขนาดอะตอมใหญ่ สัมพรรคภาพอิเล็กตรอนน้อย
    ข. พลังงานไอออไนเซชันต่ำ ขนาดอะตอมใหญ่ อิเล็กโทรเนกาติวิตีต่ำ
    ค. พลังงานไอออไนเซชันสูง ขนาดอะตอมเล็ก สัมพรรคภาพอิเล็กตรอนน้อย
    ง. พลังงานไอออไนเซชันสูง ขนาดอะตอมเล็ก อิเล็กโทรเนกาติวิตีสูง

5. ธาตุ Z มีพลังงานไอออไนเซชันตั้งแต่ลำดับที่หนึ่งถึงลำดับที่ 8 เป็นดังนี้ 1.320, 3.395, 5.307, 7.476, 10.996, 13.333, 71.343, 84.086 ธาตุ Z มีเวเลนซ์อิเล็กตรอนเท่าใด

    ก. 1                ข. 4                ค. 6                ง. 7

6. ตารางแสดงค่าพลังงานพันธะเฉลี่ยในสารไฮโดรคาร์บอน

ชนิดพันธะ
พลังงานพันธะ
C - H
413
C - C
348
การสลายพันธะโพรเพน (C3H8)  0.5 โมล จะต้องใช้พลังงานมากกว่าหรือน้อยกว่าการสลายพันธะอีเทน (C2H6)  0.5 โมล  เท่าไร
     ก. มากกว่า 587 kJ     ข. น้อยกว่า 283 kJ      ค. มากกว่า 526 kJ     ง. น้อยกว่า 278 kJ

7. เหตุใดสารโคเวเลนต์ จึงมีจุดเดือด จุดหลอมเหลวต่ำ
    ก. สารโคเวเลนต์มีแรงยึดเหนี่ยวระหว่างโมเลกุลน้อย       ข. สารโคเวเลนต์มักสลายตัวได้ง่าย
    ค. สารโคเวเลนต์ไม่มีประจุไฟฟ้า                                   ง. สารโคเวเลนต์มักมีโมเลกุลขนาดเล็ก

8. สารละลายที่เกิดจากธาตุหมู่ 1 กับน้ำ มีสมบัติอย่างไร
    ก. เป็นกลาง     ข. เป็นได้ทั้งกรดและเบส      ค. เป็นกรด       ง. เป็นเบส

9. สาร X เป็นโมเลกุลไม่มีขั้ว สาร Y เป็นโมเลกุลมีขั้ว ส่วนสาร Z เป็นพันธะไม่มีขั้ว ถ้าขนาดของโมเลกุลของ X>Y>Z แล้วสาร X Y และ Z ควรเป็นดังข้อใด

    ก. CH2 , NH3 , C6H6      ข. BeCl2 , CH2Cl2 , S8      ค. Br2 , H2O , H2      ง. SiH4 , PCl3 , PCl5

10. กำหนดค่า EN ของธาตุดังนี้ A = 3.0 , B = 2.8 X= 2.7 , Y = 3.7 จงเรียงลำดับความแรงขั้วจากมากไปน้อย

      ก. A-B , B-X , X-Y     ข. A-Y , B-X , A-X     ค. Y-B , A-Y , A-X     ง. A-X , B-Y , A-Y

11. ถ้า A , B และ C เป็นสารโคเวเลนต์ 3 ชนิด โดยทั้ง 3 ชนิดมีสถานะเป็นของเหลว โมเลกุลของสาร A และ B มีขั้ว ส่วนโมเลกุลของสาร C ไม่มีขั้ว สารใดสามารถละลายน้ำได้

     ก. สาร C       ข. สาร A และ C      ค. สาร A เเละ B       ง. สาร B และ C

12. จงระบุว่าสารในข้อใดละลายน้ำได้
      1) แคลเซียมคลอไรด์                 2) แอมโมเนียมซัลเฟต      3 )เมอร์คิวรี(I)คลอไรด์
      4) ไ อร์ออน(III)ไฮดรอกไซด์       5) โพแทสเซียมฟอสเฟต

    ก. 1 2 3       ข. 1 2 5      ค. 2 3 4       ง. 2 3 5

13. ถ้า A, B ,C ,D เป็นธาตุที่มีเลขอะตอม 7,11,17 และ 20 ตามลำดับ สูตรของไอออนและสารประกอบไอออนิกในข้อใดถูกต้อง


ข้อ
ไอออนบวก

ไอออนลบ

สูตรสารประกอบไอออนิก

ก D2+A3-D3A2

ขC3+B2-C2B3

คB+A-BA

งA+C-AC

14. X เป็นสารประกอบของธาตุ Ca และ F มีจุดหลอมเหลวสูง ไม่นำไฟฟ้าที่อุณหภูมิห้อง และละลายน้ำได้น้อยมาก ข้อสรุปใดต่อไปนี้ ไม่ สอดคล้องกับข้อมูลข้างต้น
      ก. พันธะในสาร X เป็นพันธะไอออนิก            
      ข. เมื่อ X ละลายน้ำ จะดูดความร้อน ทำให้ละลายได้น้อย
      ค. X มีสูตร CaF2 ผลึกมีความแข็งแรงมากจึงละลายได้ยาก  
      ง. สาร X เมื่อหลอมเหลวจะนำไฟฟ้า

15. เมื่อละลาย KCl ในน้ำเกิดปฏิกิริยาเป็นขั้น ๆ และมีการเปลี่ยนแปลงพลังงาน ดังนี้
1) KCl(s) -----> K+(g) + Cl-(aq)                H1 = 701.2 kJ/mol
2) K+(g) + Cl-(g) -------> K+(aq) + Cl-(aq)      H2 = 684.1 kJ/mol
ปฏิกิริยานี้เป็นแบบใด

    ก. คายพลังงานเท่ากับ 1385.3 kJ/mol           ข. คายพลังงานเท่ากับ 17.1 kJ/mol

    ค. ดูดพลังงานเท่ากับ 17.1 kJ/mol               ง. ดูดพลังงานเท่ากับ 1385.3 kJ/mol 

บทที่ 3 พันธะเคมี

บทที่ 3 พันธะเคมี

      พันธะเคมีคือ แรงยึดเหนี่ยวที่อยู่ระหว่างอะตอมซึ่งทำให้อะตอมต่าง ๆ เข้ามาอยู่รวมกันเป็นโมเลกุลได้ การสร้างพันธะเคมีของอะตอมเกิดขึ้นได้ เนื่องจากอะตอมต้องการจะปรับตัวให้ตนเองมีเวเลนซ์อิเล็กตรอนครบ 8 หรือให้ใกล้เคียงกับการครบ 8 ให้มากที่สุด (ตามกฎออกเตต) ดังนั้นจึงต้องอาศัยอะตอมอื่น ๆ มาเป็นตัวช่วยให้อิเล็กตรอนเข้ามาเสริม หรือเป็นตัวรับเอาอิเล็กตรอนออกไป และจากความพยายามในการปรับตัวของอะตอมเช่นนี้เองที่ทำให้อะตอมมีการสร้างพันธะเคมีกับอะตอมอื่น ๆ
3.1 สัญลักษณ์แบบจุดของลิวอิส กฎออกเตต
สูตรโครงสร้างของลิวอิส เป็นสูตรโครงสร้างที่กิลเบิร์ต ลิวอิสได้คิดค้นขึ้นมาเพื่อใช้ในการอธิบายรูปร่างโมเลกุล ซึ่งจะแบ่งได้เป็น 2 ประเภทได้แก่

  • สูตรโครงสร้างส่วนที่เป็นจุด เป็นสูตรโครงสร้างที่ใช้จุดแทนอิเล็กตรอนวงนอกสุดของอะตอมที่เกิดพันธะ โดยให้อิเล็กตรอนครบตามกฎออกเตต ยกเว้นบางธาตุซึ่งมีการยกเว้นได้
  • สูตรโครงสร้างส่วนที่เป็นเส้น เป็นสูตรโครงสร้างที่ใช้เส้นและจุดแทนอิเล็กตรอนวงนอกสุดของอะตอมที่เกิดพันธะ ซึ่งเส้น 1 เส้นจะแทนอิเล็กตรอน 2 ตัวหรือ 1 คู่ การเขียนสูตรโครงสร้างในลักษณะนี้จะแสดงอิเล็กตรอนคู่โดดเดี่ยวด้วยหรือไม่ก็ได้

กฏออกเตต
      จากการศึกษาธาตุเฉื่อย เช่น He, Ne,Ar,Kr พบว่าเป็นธาตุที่จัดอยู่ในประเภทโมเลกุลอะตอมเดียวทุกสถานะ คือใน 1 โมเลกุลของธาตุเฉื่อยจะมีเพียง 1 อะตอมทั้งสถานะของแข็ง ของเหลว และก๊าซในธรรมชาติเกือบจะไม่พบสารประกอบของธาตุเฉื่อยเลย แสดงว่าธาตุเฉื่อยเป็นธาตุที่เสถียรมาก เกิดปฏิกิริยาเคมีกับธาตุอื่นได้ยาก ทำให้นักวิทยาศาสตร์สนใจค้นคว้าถึงเหตุผลที่ทำให้ธาตุเฉื่อยมีความเสถียร จากการศึกษาโครงสร้างอะตอมของธาตุเฉื่อยพบว่าธาตุเฉื่อยมีการจัดเรียงอิเล็กตรอนวงนอกสุดเหมือนกัน คือ มี 8 เวเลนต์อิเล็กตรอน (ยกเว้นธาตุ He มี 2 ) เช่น
2He = 2
10Ne = 2 , 8
18Ar = 2 , 8 , 8
36Kr= 2 , 8 , 18 , 8
เมื่อเปรียบเทียบกับโครงสร้างอะตอมของธาตุอื่น ๆ เช่น H , O , N
1H = 1
8O = 2 , 6
7N = 2 , 5
      ธาตุเหล่านี้มีเวเลนต์อิเล็กตรอนน้อยกว่า 8 ในธรรมชาติจะไม่สามารถอยู่เป็นอะตอมเดี่ยว ได้ ซึ่งไม่เสถียร ต้องรวมกันเป็นโมเลกุลซึ่งอาจจะมี 2 อะตอมหรือมากกว่า การที่ธาตุเฉื่อยมี 8 เวเลนต์อิเล็กตรอนแล้วทำให้เสถียรกว่าธาตุอื่นๆ ซึ่งมีเวเลนต์อิเล็กตรอนไม่เท่ากับ 8 ทำให้นัก วิทยาศาสตร์เชื่อว่าโครงสร้างของอะตอมที่มี 8 เวเลนต์อิเล็กตรอนเป็นสภาพที่อะตอมเสถียรที่สุด ดังนั้นธาตุต่าง ๆ ที่มีเวเลนต์อิเล็กตรอนน้อยกว่า 8 จึงพยายามปรับตัวให้มีโครงสร้างแบบธาตุเฉื่อย เช่น โดยการรวมตัวกันเป็นโมเลกุลหรือใช้อิเล็กตรอนร่วมกันเพื่อทำให้เวเลนต์อิเล็กตรอนเท่ากับ 8 ส่วนไฮโดรเจนจะพยายามปรับตัวให้มีเวเลนต์อิเล็กตรอนเท่ากับ 2 เหมือนธาตุ He
      การที่อะตอมของธาตุต่าง ๆ รวมตัวกันด้วยสัดส่วนที่ทำให้มีเวเลนต์อิเล็กตรอนเท่ากับ 8 นี้ นักวิทยาศาสตร์ได้ตั้งเป็นกฎเรียกว่ากฎออกเตต
      ดังนั้นธาตุต่าง ๆ จึงพยายามรวมตัวกัน เพื่อให้เป็นไปตามกฎออกเตต ซึ่งจะทำให้ได้สารประกอบหรือโมเลกุลที่อยู่ในสภาพที่เสถียร สำหรับการรวมตัวกันด้วยพันธะโคเวเลนต์จะมีการใช้เวเลนต์อิเล็กตรอนร่วมกันระหว่างอะตอมคู่ร่วมพันธะ อิเล็กตรอนที่ใช้ร่วมกันถือว่าเป็นอิเล็กตรอนของอะตอมคู่ร่วมพันธะทั้งสอง
เช่น F2 มีสูตรแบบจุดเป็น
อะตอมของ F มีเวเลนต์อิเล็กตรอนเท่ากับ 7
เมื่อเกิดพันธะโคเวเลนต์มีการใช้อิเล็กตรอนร่วมกัน 1 คู่ ซึ่งอิเล็กตรอนที่ใช้ร่วมกัน 1 คู่นี้ถือว่าเป็นของฟลูออรีนทั้ง 2 อะตอม ทำให้ฟลูออรีนแต่ละอะตอมใน F2มีเวเลนต์อิเล็กตรอนเท่ากับ 8
จำนวนเวเลนต์อิเล็กตรอนของธาตุแต่ละชนิดอาจจะแสดงให้เห็นได้ชัดเจนขึ้นโดยการเขียนวงกลมล้อมรอบแต่ละอะตอม จำนวนอิเล็กตรอนที่อยู่ในวงกลมของธาตุใดก็จัดว่าเป็นของธาตุนั้น เช่น
3.2 พันธะไอออนิก
    พันธะไอออนิก ( Ionic bond ) หมายถึง แรงยึดเหนี่ยวที่เกิดในสารประกอบที่เกิดขึ้นระหว่าง 2 อะตอมอะตอมที่มีค่าอิเล็กโตรเนกาติวิตีต่างกันมาก อะตอมที่มีค่าอิเล็กโตรเนกาติวิตีน้อยจะให้อิเล็กตรอนแก่อะตอมที่มีค่าอิเล็กโตรเนกาติวิตีมาก และทำให้อิเล็กตรอนที่อยู่รอบๆ อะตอมครบ 8 ( octat rule ) กลายเป็นไอออนบวก และไอออนลบตามลำดับ เกิดแรงดึงดูดทางไฟฟ้าระหว่างไอออนบวกและไอออนลบ และเกิดเป็นโมเลกุลขึ้น เช่น การเกิดสารประกอบ NaCl ดังภาพ

       ตัวอย่างเช่นโครงสร้างของผลึกโซเดียมคลอไรด์เป็นของแข็ง รูปลูกบาศก์ ใสไม่มีสีในผลึก มีโซเดียมไอออนสลับกับคลอไรด์ไอออน เป็นแถว ๆ ทั้งสามมิติ มีลักษณะคล้ายตาข่าย โดยที่แตละไอออนจะมีไอออนต่างชนิดล้อมรอบอยู่ 6 ไอออน ดังรูป 2 รูป ข้างล่างดังนี้


ลักษณะสำคัญของสารประกอบไอออนิก

1.พันธะไอออนิก เป็นพันธะเคมีที่เกิดจาก ไอออนของโลหะ + ไอออนของอโลหะ เช่น NaCl , MgO , KI แต่อะตอมของโลหะบางชนิด เช่น Al , Be , Hg สามารถสร้างพันธะโคเวเลนต์กับอะตอมของโลหะได้ เช่น Al2Cl6, BeF2, BeCl2, HgCl2เป็นสารประกอบโคเวเลนต์แต่ Al2O3, Hg2Cl2 เป็นสารประกอบไอออนิก
2. พันธะไอออนิก อาจเป็นพันธะเคมีที่เกิดจากธาตุที่มีพลังงานไอออไนเซชันต่ำรวมกับธาตุที่มีพลังงานไอออไนเซชันสูง
3. พันธะไออนิก อาจเป็นพันธะเคมีที่เกดจากไอออนบวกที่เป็นกลุ่มอะตอมของอโลหะ เช่น NH4+กับไอออนลบของอโลหะ เช่น

4. สารประกอบไอออนิกไม่มีสูตรโมเลกุล มีแต่สูตรเอมพิริกัล
5. สารประกอบไอออนิกมีจุดเดือด จุดหลอมเหลวสูง เช่น NaCl จุดหลอมเหลว 8010C
6. สารประกอบไอออนิกในภาวะปกติเป็นของแข็ง ประกอบด้วยไอออนบวก และไอออนลบ ไอออนเหล่านี้ไม่เคลื่อนที่ ดังนั้นจึงไม่นำไฟฟ้า แต่เมื่อหลอมเหลวหรือละลายน้ำ จะแตกตัวเป็นไอออนเคลื่อนที่ได้ เกิดเป็นสารอิเล็กโทรไลต์จึงสามารถนำไฟฟ้าได้
7. สารประกอบไอออนิกชนิดที่ละลายน้ำได้ จะต้องมีการเปลี่ยนแปลงพลังงานเกิดขึ้นเสมอ อาจเป็นแบบคายหรือดูดพลังงาน เช่น KCl 1 โมล ละลายน้ำ ดูดพลังงาน = 17 kJ/mol
8. สารประกอบไอออนิกที่เกิดจากอะตอมโลหะกับอะตอมอโลหะ สร้างเฉพาะพันธะไอออนิกอย่างเดียว เช่น NaCl , MgCl2, K2S , CaO
9. สารประกอบไอออนิกที่เกิดจากโลหะหรือกลุ่มอะตอมอโลหะที่เกิดไอออนบวกกับอโลหะ หรือกลุ่มอะตอมอะโลหะที่เป็นไอออนลบ สารพวกนี้จะมีทั้งพันธะไอออนิก และพันธะโคเวเลนต์ เช่น CaCO3, NH4Cl , CaCO3มีพันธะไอออนิกระหว่างไอออนบวกคือ Ca2+กับไอออนลบคือ [CO3]2-และมีพันธะโคเวเลนต์ในส่วนที่เป็นไอออนลบคือ [CO3]2-ดังนี้
NH4Cl มีพันธะไอออนิกระหว่างไอออนบวกคือ NH4+กับไอออนลบคือ Cl-และมีพันธะโคเวเลนต์ในส่วนที่เป็นไอออนบวกคือ [NH4]+ดังนี้
การเขียนสูตรของสารประกอบไอออนิก ใช้หลักดังนี้
1. เขียนไอออนบวกของโลหะหรือกลุ่มไอออนบวกไว้ข้างหน้า ตามด้วยไอออนลบของอโลหะ หรือกลุ่มไอออนลบ ยกเว้นสารประกอบไอออนิกที่เป็นเกลืออะซิเตต (CH3COO-) จะเขียนกลุ่มไอออนลบไว้ก่อนแล้วตามด้วยไอออนบวกของโลหะ เช่น CH3COONa , (CH3COO)2Ca
2. ไอออนบวกและไอออนลบ จะรวมกันในอัตราส่วนที่ทำให้ผลรวมของประจุเป็นศูนย์ ดังนั้นจึงต้องหาตัวเลขมาคูณกับจำนวนประจุบนไอออนบวก และไอออนลบให้มีจำนวนประจุเท่ากัน แล้วใส่ตัวเลขเหล่านั้นไว้มุมขวาล่างของแต่ละไอออน ซึ่งทำได้โดยใช้จำนวนประจุบนไอออนบวกและไอออนลบคูณไขว้กัน
3. ถ้ากลุ่มไอออนบวกหรือกลุ่มไอออนลบมีมากกว่า 1 กลุ่ม ให้ใส่วงเล็บ ( ) และใส่จำนวนกลุ่มไว้ที่มุมล่างขวา
ตารางที่1 ไอออนบวกบางชนิดที่ควรทราบ
ผลการค้นหารูปภาพสำหรับ ไอออนบวก
ตารางที่2 ไอออนลบบางชนิดที่ควรทราบ
การเรียกชื่อสารประกอบไอออนิก  
1. สารประกอบธาตุคู่(Binary compound) ถ้าสารประกอบเกิดจาก ธาตุโลหะที่มีไอออนได้ชนิดเดียวรวมตัวกับอโลหะ ให้อ่านชื่อโลหะที่เป็นไอออนบวก แล้วตามด้วยชื่ออโลหะที่เป็นไอออนลบโดยลงเสียงพยางค์ท้ายด้วย ไอด์ (ide) เช่น
- ออกซิเจน เปลี่ยนเป็น ออกไซด์ (oxide)
- ไฮโดรเจน เปลี่ยนเป็น ไฮไดรด์ (hydride)
- คลอรีน เปลี่ยนเป็น คลอไรด์ (chloride)
ตัวอย่าง การอ่านชื่อสารประกอบไอออนิกธาตุคู่
- NaCl อ่านว่า โซเดียมคลอไรด์
- CaI2อ่านว่า แคลเซียมไอโอไดด์
- KBr อ่านว่า โพแทสเซียมโบรไมด์
- NH4Cl อ่านว่า แอมโมเนียมคลอไรด์
ถ้าสารประกอบที่เกิดจากธาตุโลหะเดียวกันที่มีไอออนได้หลายชนิด รวมตัวกับอโลหะ ให้อ่านชื่อโลหะที่เป็นไอออนบวกแล้วตามด้วยค่าประจุของไอออนโลหะโดยวงเล็บเป็นเลขโรมัน แล้วตามด้วยอโลหะที่เป็นไอออนลบโดยเปลี่ยนเสียงพยางค์ท้ายเป็นไอด์ (ide) เช่น
- Fe เกิดไอออนได้ 2 ชนิด คือ Fe2+และ Fe3+
- FeCl2อ่านว่า ไอร์ออน (II) คลอไรด์
- FeCl3อ่านว่า ไอร์ออน (III) คลอไรด์
- Cu เกิดไอออนได้ 2 ชนิด คือ Cu+และ Cu2+
- Cu2S อ่านว่า คอปเปอร์ (I) ซัลไฟด์
- CuS อ่านว่า คอปเปอร์ (II) ซัลไฟด์
2. สารประกอบธาตุสามหรือมากกว่าถ้าสารประกอบเกิดจากไอออนบวกของโลหะ หรือกลุ่มไอออนบวกรวมตัวกับ กลุ่มไอออนลบ ให้อ่านชื่อไอออนบวกของโลหะ (โลหะนั้นเกิดไอออนบวกได้ชนิดเดียว) หรือกลุ่มไอออนบวก แล้วตามด้วยชื่อกลุ่มไอออนลบ เช่น
- Na2SO4 อ่านว่า โซเดียมซัลเฟต
- CaCO3 อ่านว่า แคลเซียมคาร์บอเนต
- KNO3 อ่านว่า โพแทสเซียมไนเตรต
- Ba(OH)2 อ่านว่า แบเรียมไฮดรอกไซด์
- (NH4)3PO4 อ่านว่า แอมโมเนียมฟอสเฟต
ถ้าสารประกอบเกิดจากโลหะที่เกิดไอออนได้หลายชนิดรวมตัวกับกลุ่มไอออนลบ ให้อ่านชื่อไอออนบวกของโลหะแล้ววงเล็บค่าประจุของไอออนบวกนั้น แล้วจึงอ่านชื่อกลุ่มไอออนลบตามหลัง เช่น
- Cr เกิดไอออนได้ 2 ชนิด คือ Cr2+กับ Cr3+
- CrSO4 อ่านว่า โครเมียม (II) ซัลเฟต
- Cr2(SO4)3 อ่านว่า โครเมียม (III) ซัลเฟต
- Hg เกิดไอออนได้ 2 ชนิดคือ Hg22+(Hg+) และ Hg2+
- Hg2(NO3)2 อ่านว่า เมอคิวรี (I) ไนเตรต Hg(NO3)2อ่านว่า เมอคิวรี (II) ไนเตรต
พลังงานกับการเกิดสารประกอบไอออนิก             
       ในการเกิดสารประกอบไอออนิก จะมีการเปลี่ยนแปลงหลายขั้นตอนย่อย ๆ และแต่ละขั้นตอนย่อยจะมีการเปลี่ยนแปลงพลังงาน เช่น
การเกิดโซเดียมคลอไรด์จากโลหะ Na กับก๊าซ Cl2
Na (s) +1/2 Cl2(g)------> NaCl (s)
การเกิด NaCl มีขั้นตอนต่าง ๆ และพลังงานเกี่ยวข้องดังนี้
ขั้นที่ 1 (DH1= พลังงานการระเหิด)
Na (s) -----------> Na (g) DH1= +109 kJ/mol
ขั้นที่ 2 (DH2= พลังงานสลายพันธะ)
1/2 Cl2(g) -------------> Cl (g) DH2= +121 kJ/mol
ขั้นที่ 3 (DH3= พลังงานไอออไนเซชัน)
Na (g) ---------------> Na+(g) + e-DH3= +494 kJ/mol
ขั้นที่ 4 (DH4= พลังงานสัมพรรคภาพอิเล็กตรอน)
Cl2(g) + e---------------> Cl-(g) DH4= -347 kJ/mol
ขั้นที่ 5 (DH5= พลังงานแลตทิช)
Na+(g) + Cl-(g)------------> NaCl (s) DH5= -787 kJ/mol
เมื่อรวมขั้นที่ 1 ถึง 5 เข้าด้วยกันจะได้
Na (s) + 1/2 Cl2(g)-----------------> NaCl (s) DH = -410 kJ/mol
แสดงว่าการเกิด NaCl เป็นการเปลี่ยนแปลงแบบคายพลังงานเขียนแผนภาพ แสดงขั้นตอนการเปลี่ยนแปลงพลังงานต่าง ๆ ในการเกิดสารประกอบไอออนิกได้ดังนี้
เรียกแผนภาพดังกล่าวว่าBonr - Haber cycle
ในการเกิดสารประกอบไอออนิกจากโลหะและอโลหะนั้น จะมีพลังงานเกี่ยวข้อง 2 แบบ คือ ขั้นที่ 1 , 2 , 3 เป็นแบบดูดพลังงาน ส่วนขั้นตอนที่ 4 และ 5 เป็นแบบคายพลังงาน ดังนั้น
พลังงานในการเกิด NaCl (DH) = DH1+ DH2+ DH3+DH4+ DH5
= (+109) + (+121) + (+494) + (-347) + (-787)
= -410 kJ/mol
การเกิดสารประกอบไอออนิกจากโลหะกับอโลหะนั้นโดยทั่วไปมีพลังงานเปลี่ยนแปลง 2 แบบคือการเกิดสารประกอบไอออนิกแบบคายพลังงาน จะมีพลังงานในขั้น 1 , 2 , 3 (DH1, DH2และ DH3) ที่ดูดเข้าไปทั้งหมดน้อยกว่า พลังงานที่คายออกมาจากขั้นที่ 4 และ 5 (DH4และ DH5) และ
* การเกิดสารประกอบไอออนิกแบบดูดพลังงาน จะมีพลังงานในขั้น 1 , 2 , 3 (DH1, DH2และ DH3) ที่ดูดเข้าไปทั้งหมดมากกว่า พลังงานที่คายออกมาจากขั้นที่ 4 และ 5 (DH4และ DH5)
ส่วนมากการเกิดสารประกอบไอออนิกมักจะเป็นแบบคายพลังงาน โดยเฉพาะการเกิดสารประกอบไอออนิกของธาตุหมู่ 7A
สมการไอออนิก       
       เมื่อผสมสารละลายของสารประกอบไอออนิกบางชนิดเข้าด้วยกัน จะได้สารละลายที่มีไอออนของสารทั้งสองปนกันอยู่ ปรากฏเป็นสารละลายใส
เช่น ผสม NaCl (aq) กับ KNO3(aq) เขียนสมการเคมีที่เกิดขึ้นได้ดังนี้
NaCl (aq) + KNO3(aq) ---------> NaNO3(aq) + KCl (aq)
หรือ Na+(aq) + Cl-(aq) + K+(aq) +NO3-(aq) ------------> Na+(aq) + NO3-(aq) + K+(aq) + Cl-(aq)
เมื่อผสมกัน จะมีไอออนอยู่ในสารละลายทั้ง 4 ชนิด แสดงว่า ไม่เกิดผลิตภัณฑ์ที่เป็นของแข็ง จึงอยู่ในสภาพไอออน (มีน้ำล้อมรอบ)
แต่เมื่อผสมสารละลายของสารประกอบไอออนิกบางชนิดเข้าด้วยกัน จะได้ผลิตภัณฑ์เป็นตะกอนเกิดขึ้น เช่น
ผสม NaCl (aq) กับ AgNO3(aq) เขียนสมการเคมีที่เกิดขึ้นได้ดังนี้
NaCl (aq) + AgNO3(aq) -----------------> NaNO3(aq) + AgCl (s)
หรือ Na+(aq) + Cl-(aq) + Ag+(aq) +NO3-(aq) ---------------> Na+(aq) + NO3-(aq) + AgCl(s)
เมื่อผสมกันจะเกิดตะกอนของ AgCl(s)
เขียนสมการแสดงการเกิดตะกอน AgCl ดังนี้
Ag+(aq) + Cl-(aq) ---------------> AgCl(s)
เรียกสมการนี้ว่าสมการไอออนิก
สมการไอออนิก(Ionic equation )คือ สมการเคมีที่เขียนเฉพาะไอออนหรือโมเลกุลของสารที่มีส่วนในการเกิดปฏิกิริยา ส่วนไอออนหรือโมลกุลของสารใดไม่มีส่วนในการเกิดปฏิกิริยาไม่ต้องเขียน สมการไอออนิก จะต้องเป็นสมการที่มีสารใดสารหนึ่งเป็นไอออนร่วมอยู่ด้วยในปฏิกิริยานั้น เช่น
Zn (s) + 2H+(aq) ---------------> Zn2+(aq) + H2(g)
H+(aq) + OH-(aq) --------------------> H2O (l)
หลักการเขียนสมการไอออนิก
1. ให้เขียนเฉพาะส่วนไอออนหรือโมเลกุลของสารทำปฏิกิริยากันเท่านั้น
2. ถ้าสารที่เกี่ยวข้องในปฏิกิริยาเป็นสารที่ไม่ละลายน้ำหรือไม่แตกตัวเป็นไอออนหรือเป็นออกไซด์หรือเป็นก๊าซให้เขียนสูตรโมเลกุลของสารนั้นในสมการได้ ตัวอย่าง ออกไซด์ เช่น CO2, H2O ก๊าซ เช่น H2, NH3สารที่ไม่ละลายน้ำ เช่น CaCO3, AgCl
3. ดุลสมการไอออนิกโดยทำจำนวนอะตอมและจำนวนไอออนของธาตุทุกธาตุ ทั้งทางซ้ายและทางขวาของสมการให้เท่ากัน พร้อมทั้งดุลประจุรวมทั้งทางซ้ายและขวาของสมการให้เท่ากัน
ตัวอย่างที่ 1จงเขียนสมการไอออนิก เมื่อนำสารเหล่านี้ละลายน้ำ KOH , BaCl2, H2SO4
วิธีทำ
KOH ละลายน้ำเขียนสมการไอออนิกได้ดังนี้
KOH (s) ------------------> K+(aq) + OH-(aq)
ฺBaCl2ละลายน้ำเขียนสมการไอออนิกได้ดังนี้
BaCl2----------------> Ba2+(aq) + 2Cl-(aq)
H2SO4ละลายน้ำเขียนสมการไอออนิกได้ดังนี้
H2SO4(aq) ---------------------> 2H+(aq) + SO42-(aq)
ตัวอย่างที่ 2จงเขียนสมการไอออนิกที่เกิดจากการผสมสารละลายแต่ละคู่ต่อไปนี้
ก. AgNO3(aq) กับ CaBr2(aq)
ข. CuSO4(aq) กับ K2S (aq)
วิธีทำ
ก.ขั้นที่ 1
AgNO3(aq) + CaBr2(aq) ------------------> 2AgBr (s) + Ca(NO3)2(aq)
ขั้นที่ 2
2Ag+(aq) + NO3-(aq) + Ca2+(aq) + 2Br-(aq) -------------------> 2AgBr (s) + Ca2+(aq) + 2NO3-(aq)
ขั้นที่ 3
2Ag+(aq) + 2Br-(aq) -----------------> 2AgBr (s) สมการไอออนิก
ข.ขั้นที่ 1
CuSO4(aq) + K2S (aq) --------------> CuS (s) + K2SO4(aq)
ขั้นที่ 2
Cu2+(aq) + SO42-(aq) + 2K+(aq)+ S2-(aq) --------------------> CuS (s) + K+(aq) + SO42-(aq)
ขั้นที่ 3
Cu2+(aq) + S2-(aq) -----------------> CuS (s) สมการไอออนิก


3.3 พันธะโคเวเลนต์
             
         พันธะโคเวเลนต์(Covalent bond) มาจากคำว่า co + valence electron ซึ่งหมายถึง พันธะที่เกิดจากการใช้เวเลนซ์อิเล็กตรอนร่วมกัน ดังเช่น ในกรณีของไฮโดรเจน ดังนั้นลักษณะที่สำคัญของ พันธะโคเวเลนต์ก็คือการที่อะตอมใช้เวเลนต์อิเล็กตรอนร่วมกันเป็นคู่ ๆ
- สารประกอบที่อะตอมแต่ละคู่ยึดเหนี่ยวกันด้วยพันธะโคเวเลนต์ เรียกว่าสารโคเวเลนต์- โมเลกุลของสารที่อะตอมแต่ละคู่ยึดเหนี่ยวกันด้วยพันธะโคเวเลนต์เรียกว่าโมเลกุลโคเวเลนต์
การเกิดพันธะโคเวเลนต์       
       เนื่องจาก พันธะโคเวเลนต์ เกิดจากการใช้เวเลนต์อิเล็กตรอนร่วมกัน ซึ่งอาจจะใช้ร่วมกันเพียง 1 คู่ หรือมากกว่า 1 คู่ก็ได้
- อิเล็กตรอนคู่ที่อะตอมทั้งสองใช้ร่วมกันเรียกว่า “อิเล็กตรอนคู่ร่วมพันธะ”
- อะตอมที่ใช้อิเล็กตรอนร่วมกันเรียกว่าอะตอมคู่ร่วมพันธะ
* ถ้าอะตอมคู่ร่วมพันธะใช้อิเล็กตรอนร่วมกัน 1 คู่จะเกิดเป็นพันธะโคเวเลนต์ที่เรียกว่าพันธะเดี่ยวเช่น ในโมเลกุลของไฮโดรเจน
* ถ้าอะตอมคู่ร่วมพันธะใช้อิเล็กตรอนร่วมกัน 2 คู่จะเกิดเป็นพันธะโคเวเลนต์ที่เรียกว่าพันธะคู่เช่น ในโมเลกุลของออกซิเจน
* ถ้าอะตอมคู่ร่วมพันธะใช้อิเล็กตรอนร่วมกัน 3 คู่จะเกิดเป็นพันธะโคเวเลนต์ที่เรียกว่าพันธะสามเช่น ในโมเลกุลของไฮโดรเจน
       จากการศึกษาสารโคเวเลนต์จะพบว่า ธาตุที่จะสร้างพันธะโคเวเลนต์ส่วนมากเป็นธาตุอโลหะกับอโลหะ ทั้งนี้เนื่องจากโลหะมีพลังงานไอออไนเซชันค่อนข้างสูง จึงเสียอิเล็กตรอนได้ยาก เมื่ออโลหะรวมกันเป็นโมเลกุลจึงไม่มีอะตอมใดเสียอิเล็กตรอน มีแต่ใช้อิเล็กตรอนร่วมกันเกิดเป็นพันธะโคเวเลนต์ อย่างไรก็ตามโลหะบางชนิดก็สามารถเกิดพันธะโคเวเลนต์กับอโลหะได้ เช่น Be เกิดเป็นสารโคเวเลนต์คือ BeCl2เป็นต้น
ชนิดของพันธะโคเวเลนต์ ชนิดของพันธะโคเวเลนต์ พิจารณาจากจำนวนอิเล็กตรอนที่ใช้ร่วมกันของอะตอมคู่ร่วมพันธะ ดังนี้
ก. พันธะเดี่ยวเป็นพันธะโคเวเลนต์ที่เกิดจากอะตอมคู่สร้างพันธะทั้งสองใช้อิเล็กตรอนร่วมกัน 1 คู่ ใช้เส้น ( - ) แทนพันธะเดี่ยว เช่น
ข. พันธะคู่เป็นพันธะโคเวเลนต์ที่เกิดจากอะตอมคู่สร้างพันธะทั้งสองใช้อิเล็กตรอนร่วมกัน 2 คู่ ใช้เส้น 2 เส้น ( = ) แทน 1 พันธะคู่ เช่นพันธะระหว่าง O ใน O2, O กับ C ใน CO2, C กับ H ใน C2H4
ค. พันธะสามเป็นพันธะโคเวเลนต์ที่เกิดจากอะตอมคู่สร้างพันธะทั้งสองใช้อิเล็กตรอนร่วมกัน 3 คู่ ใช้เส้น 3 เส้น แทน 1 พันธะสาม เช่น พันธะระหว่าง N กับ N ใน N2, N กับ C ใน HCN

การเขียนสูตรและการเรียกชื่อสารประกอบโคเวเลนต์
การเขียนสูตรสารประกอบโคเวเลนต์เรียงตามหลักสากล ดังนี้
Si C Sb As P N H Te S At I Br Cl O F
       จากความรู้เรื่องกฎออกเตต ทำให้สามารถทำนายสูตรอย่างง่ายของสารได้ โดยใช้ความต้องการอิเล็กตรอนคู่ร่วมพันธะของแต่ละอะตอมของธาตุคูณไขว้ เช่น
ตัวอย่างที่1สูตรของสารประกอบของธาตุ H กับ S ; H และ S มีเวเลนต์อิเล็กตรอน 1 และ 6 ตามลำดับ ดังนั้น H และ S ต้องการอิเล็กตรอนคู่ร่วมพันธะจำนวน 1 และ 2 ตามลำดับ เพื่อให้แต่ละอะตอมของธาตุมีการจัดอิเล็กตรอนแบบก๊าซเฉื่อย

       ตัวอย่าง สูตรของสารประกอบของธาตุ S กับ C ; S และ C มีเวเลนต์อิเล็กตรอน 6 และ 4 ตามลำดับ ดังนั้น S และ C ต้องการอิเล็กตรอนคู่ร่วมพันธะจำนวน 2 และ 4 ตามลำดับ เพื่อให้แต่ละอะตอมของธาตุมีการจัดอิเล็กตรอนแบบก๊าซเฉื่อย

       ตัวอย่าง สูตรของสารประกอบของธาตุ N กับ Cl ; N และ Cl มีเวเลนต์อิเล็กตรอน 5 และ 7 ตามลำดับ ดังนั้น N และ Cl ต้องการอิเล็กตรอนคู่ร่วมพันธะจำนวน 3 และ 1 ตามลำดับ เพื่อให้แต่ละอะตอมของธาตุมีการจัดอิเล็กตรอนแบบก๊าซเฉื่อย
การเรียกชื่อสารประกอบโคเวเลนต์(Names of Covalent Compounds)
1.อ่านชื่อธาตุที่อยู่ด้านหน้าก่อนตามด้วยธาตุที่อยู่ด้านหลังโดยเปลี่ยนเสียงพยางค์ท้ายเป็นไ-ด์(ide )2
2.อ่านระบุจำนวนอะตอมของธาตุด้วยเลขจำนวนในภาษากรีก ได้แก่
   1 =mono-2=di-3=tri-4=tetra-5=penta-6=hexa-7=octa-8=nona-9=deca-
3.ถ้าธาตุแรกมีอะตอมเดียว ไม่ต้องอ่านระบุจำนวนอะตอมของธาตุนั้นแต่ถ้าธาตุหลังมีเพียงหนึ่งอะตอมก็ต้องระบุจำนวนอะตอมด้วยเสมอ
ตัวอย่างการอ่านชื่อ
CO2อ่านว่าคาร์บอนไดออกไซด์,COอ่านว่าคาร์บอนมอนออกไซด์,
BF3อ่านว่าโบรอนไตรฟลูออไรด์,N2Oอ่านว่าไดไนโตรเจนมอนอกไซด์,
N2O5อ่านว่าไดไนโตรเจนเพนตอกไซด์, P4O10อ่านว่าเตตระฟอสฟอรัสเดคะออกไซด์
OF2อ่านว่าออกซิเจนไดฟลูออไรด์, CCl4อ่านว่าคาร์บอนเตตระคลอไรด์
โครงสร้างของโมเลกุลโคเวเลนต์              
จากการศึกษาสมบัติและโครงสร้างของสารต่าง ๆ จะพบว่าสารที่มีโครงสร้างต่างกันจะมีสมบัติต่างกัน ถึงแม้ว่าจะมีสูตรโมเลกุลเหมือนกันหรือไม่ก็ตาม เช่น เอทานอล และเมทานอล และเมทอกซีมีเทน ซึ่งมีสูตรโมเลกุลเป็น C2H6เหมือนกัน แต่มีสูตรโครงสร้างต่างกันจึงทำให้สารทั้งสองมีสมบัติต่างกันด้วย
       จากตัวอย่างทั้งสองนี้แสดงให้เห็นว่า โครงสร้างโมเลกุล (รูปร่างโมเลกุล) มีความสัมพันธ์กับสมบัติของสาร ดังนั้นในการศึกษาสมบัติของสารจึงจำเป็นต้องทราบโครงสร้างโมเลกุลหรือรูปร่างโมเลกุลของสารนั้นด้วย
รูปร่างโมเลกุลโคเวลนต์       การจัดเรียงอะตอมต่าง ๆ ในโมเลกุลโคเวเลนต์มีตำแหน่งและทิศทางที่แน่นอนจึงทำให้โมเลกุลโคเวเลนต์ของสารต่าง ๆ มีรูปร่างแตกต่างกัน สิ่งที่ใช้บอกรูปร่างโมเลกุลโคเวเลนต์
       จะเป็นอย่างไรนั้น คือ การจัดเวเลนต์อิเล็กตรอนรอบอะตอมกลางของธาตุในโมเลกุลโคเวเลนต์ นอกจากนั้นความยาวพันธะและมุมระหว่างพันธะยังสามารถใช้บอกรูปร่างโมเลกุลได้ด้วย
       ความยาวพันธะ(Bond length)คือ ระยะทางระหว่างนิวเคลียสของอะตอมคู่หนึ่งที่มีพันธะต่อกัน         
       มุมระหว่างพันธะ(Bond angle)คือ มุมที่เกิดจากอะตอมสองอะตอมทำกับอะตอมกลางหรือมุมที่เกิดระหว่างพันธะสองพันธะ เช่น
       มุม เป็นมุมระหว่างพันธะในโมเลกุล yx2และมุมระหว่างพันธะจะกว้างหรือแคบขึ้นอยู่กับแรงผลักระหว่างอิเล็กตรอนคู่โดดเดี่ยวและอิเล็กตรอนคู่ร่วมพันธะรอบ ๆ อะตอมกลาง โดยถือหลักว่าโมเลกุลที่เสถียรจะต้องมีพลังงานต่ำ นั่นคือ อะตอมในโมเลกุลต้องจัดเรียงตัวกันเพื่อให้มแรงผลักของคู่อิเล็กตรอนให้น้อยที่สุด
การทำนายรูปร่างโมเลกุลโคเวเลนต์โมเลกุลโคเวเลนต์จะมีรูปร่างเป็นอย่างไร พิจารณาจาก
1. จำนวนอิเล็กตรอนคู่ร่วมพันธะรอบอะตอมกลาง (bonding electron)
2. จำนวนอิเล็กตรอนคู่โดดเดี่ยวรอบอะตอมกลาง (non bonding electron)
       ดังนั้นการทำนายรูปร่างโมเลกุลให้เลือกอะตอมกลาง ซึ่งเป็นอะตอมที่สร้างพันธะได้มากที่สุดก่อน และนับจำนวนพันธะที่อะตอมกลางสร้างได้ และจำนวนอิเล็กตรอนคู่โดดเดี่ยวรอบอะตอมกลางนั้น แรงผลักทั้งหมดของคู่อิเล็กตรอนที่เกิดจากการสร้างพันธะ และไม่ได้สร้างพันธะจะทำให้เกิดรูปร่างโมเลกุลที่แตกต่างกันดังนี้
1. รูปร่างเส้นตรง ( Linear)
โมเลกุล BeCl2มีสูตรโครงสร้างแบบจุดและแบบเส้นดังนี้
อะตอมกลาง Be ในโมเลกุล BeCl2มีเวเลนต์อิเล็กตรอนทั้งหมด 2 คู่ และทั้งสองคู่เป็นอิเล็กตรอนคู่ร่วมพันธะ ซึ่งจะเกิดการผลักกันให้ห่างกันมากที่สุด ทำให้โมเลกุลเป็นรูปร่างเส้นตรง มีมุมระหว่างพันธะเป็น 1800 ดังรูป
2. รูปร่างสามเหลี่ยมแบนราบ (Trigonal planar) ในโมเลกุล BCl3มีสูตรแบบจุดและแบบเส้นดังนี้
อะตอมกลาง B ในโมเลกุล BCl3มีเวเลนต์อิเล็กตรอนทั้งหมด 3 คู่ และทั้ง 3 คู่เป็นอิเล็กตรอนคู่ร่วมพันธะเดี่ยว 3 พันธะ ซึ่งเกิดการผลักกันให้ห่างกันมากที่สุด ทำให้โมเลกุลเป็นรูปสามเหลี่ยมแบนราบ มีมุมระหว่างพันธะเป็น 1200ดังรูป
3. รูปร่างทรงสี่หน้า (Tetarhedral) โมเลกุลมีเธน (CH4) มีโครงสร้างแบบจุดและแบบเส้นดังนี้
อะตอมกลาง C ในโมเลกุล CH4มีเวเลนต์อิเล็กตรอนทั้งหมด 4 คู่ และทั้ง 4 คู่เป็นอิเล็กตรอนคู่ร่วมพันธะเดี่ยว 4 พันธะ ซึ่งเกิดการผลักกันให้ห่างกันมากที่สุดทำให้โมเลกุลเป็นรูปทรงสี่หน้า มีมุมระหว่างพันธะเป็น 109.50ดังรูป
4. รูปร่างพีระมิดคู่ฐานสามเหลี่ยม (Trigonal bipyramiddal) โมเลกุล PCl5มีโครงสร้างแบบจุดและแบบเส้นดังนี้
อะตอมกลาง P ในโมเลกุล PCl5มีเวเลนต์อิเล็กตรอนทั้งหมด 5 คู่ และทั้ง 5 คู่ เป็นอิเล็กตรอนคู่ร่วมพันธะเดี่ยว 5 พันธะ ซึ่งเกิดการผลักกันให้ห่างกันมากที่สุด ทำให้โมเลกุลเป็นรูปพีระมิดคู่ฐานสามเหลี่ยม มีมุมระหว่างพันธะเป็น 1200และ 900ดังรูป
5. รูปร่างทรงแปดหน้า (Octahedral) ในโมเลกุล SF6มีโครงสร้างแบบจุดและแบบเส้นดังนี้
อะตอมกลางSในโมเลกุลSF6มีเวเลนต์อิเล็กตรอนทั้งหมด6คู่ และทั้ง6คู่ เป็นอิเล็กตรอนคู่ร่วมพันธะเดี่ยว6พันธะ ซึ่งเกิดจากการผลักกันให้ห่างกันมากที่สุด ทำให้โมเลกุลเป็นรูปทรงแปดหน้า มีมุมระหว่างพันธะเป็น900ดังรูป
อิเล็กตรอนคู่โดดเดี่ยวกับรูปร่างโมเลกุล       โมเลกุลโคเวเลนต์ที่มีสูตรคล้ายกัน (คือ มีจำนวนอะตอมเป็นอัตราส่วนเท่ากัน) บางสารก็มีรูปร่างแตกต่างกัน เช่น BeF2และ BeCl2มีรูปร่างโมเลกุลแตกต่างกับ H2O และ H2S จากการพิจารณาพบว่าสิ่งที่ทำให้รูปร่างโมเลกุลของสารเหล่านี้ต่างกันก็คือ จำนวนเวเลนต์อิเล็กตรอนรอบอะตอมกลางในโมเลกุลว่ามีจำนวนอิเล็กตรอน คู่ร่วมพันธะ และจำนวนอิเล็กตรอนคู่โดดเดี่ยว แตกต่างกันอย่างไร
อิเล็กตรอนคู่ร่วมพันธะ(Bond pair electrons) คืออิเล็กตรอนคู่ที่ใช้ร่วมกันเพื่อเกิดพันธะขึ้น
อิเล็กตรอนคู่โดดเดี่ยว( Lone pair electrons) คืออิเล็กตรอนที่ไม่ได้ใช้เกิดพันธะ
ตามปกติอิเล็กตรอนแต่ละคู่จะออกแรงผลักกัน แรงผลักระหว่างอิเล็กตรอนแต่ละคู่มากน้อยไม่เท่ากัน ซึ่งสามารถเขียนแรงผลักระหว่างอิเล็กตรอนคู่ต่าง ๆ จากมากไปหาน้อยได้ดังนี้
e คู่โดดเดี่ยว กับ e คู่โดดเดี่ยว > e คู่โดดเดี่ยว กับ e คู่ร่วมพันธะ > e คู่ร่วมพันธะกับ e คู่ร่วมพันธะ
การพิจารณารูปร่างโมเลกุลที่อะตอมกลางมีจำนวนอิเล็กตรอนคู่ร่วมพันธะและอิเล็กตรอนคู่โดดเดี่ยวแตกต่างกันดังนี้
1. รูปร่างพีระมิดฐานสามเหลี่ยม (Trigonal pyramidal) โมเลกุล NH3มีสูตรโครงสร้างดังนี้
       อะตอมกลางNในโมเลกุลNH3มีเวเลนต์อิเล็กตรอนทั้งหมด4คู่ มีอิเล็กตรอนคู่ร่วมพันธะ3คู่ และอิเล็กตรอนคู่โดดเดี่ยว1คู่ อิเล็กตรอนทั้ง4คู่ รอบอะตอมกลางที่กล่าวนี้จะผลักกันให้ห่างมากที่สุด โดยพยายามปรับตัวให้อยู่ในแนวเส้นตรงที่ชี้ออกจากอะตอมกลางไปยังมุมทั้ง4ของรูปทรงสี่หน้าคล้ายกับมีเทน(CH4)และเนื่องจากแรงผลักระหว่างอิเล็กตรอนคู่โดดเดี่ยวกับอิเล็กตรอนคู่ร่วมพันธะของอะตอมNในNH3มีค่ามากว่าแรงผลักระหว่างอิเล็กตรอนคู่ร่วมพันธะกับอิเล็กตรอนคู่ร่วมพันธะ จึงทำให้มุมระหว่างพันธะH - N - Hลดลงเหลือ1070และมีรูปร่างโมเลกุลเป็น รูปพีระมิดฐานสามเหลี่ยม ดังรูป
สรุป
โมเลกุลหรือไอออนโคเวเลนต์ใด ๆ ถ้าอะตอมกลางมี 3 พันธะ (ไม่คำนึงถึงชนิดพันธะ) และมีอิเล็กตรอนคู่โดดเดี่ยวเหลือ 1 คู่ รูปร่างโมเลกุลหรือไอออนเป็นพีระมิดฐานสามเหลี่ยม (pyramidal)
2. รูปร่างโมเลกุลแบบมุมงอหรือตัววี โมเลกุลของ H2O มีสูตรโครงสร้างดังนี้
       อะตอมกลาง O ในโมเลกุล H2O มีเวเลนต์อิเล็กตรอนทั้งหมด 4 คู่ มีอิเล็กตรอนคู่ร่วมพันธะ 2 คู่ และอิเล็กตรอนคู่โดดเดี่ยว 2 คู่ อิเล็กตรอนทั้ง 4 คู่รอบอะตอมกลางนี้จะผลักกันให้ห่างกันมากที่สุดโดยพยายามปรับตัวให้อยู่ในแนวเส้นตรงที่ชี้ออกจากอะตอมกลางไปยังมุมทั้ง 4 ของรูปทรงสี่หน้าคล้ายกับมีเทน (CH4) และเนื่องจากอิเล็กตรอนคู่โดดเดี่ยวของ O ทั้ง 2 คู่เกิดแรงผลักมากกว่าอิเล็กตรอนคู่ร่วมพันธะจึงทำให้มุมระหว่างพันธะ H - O - H มีมุมลดลงเหลือ 1050รูปร่างโมเลกุล จึงไม่เป็นเส้นตรงแต่เป็นรูปมุมงอหรือ รูปตัววี ดังรูป
สรุป
โมเลกุลหรือไอออนโคเวเลนต์ใด ๆ ถ้าอะตอมกลางมี 2 พันธะ (ไม่คำนึงถึงชนิดของพันธะ) และมีอิเล็กตรอนคู่โดดเดี่ยวเหลือ 2 คู่ รูปร่างโมเลกุลหรือไอออนเป็นมุมงอหรือตัววี ( Bent or V - shaped)
หลักการทำนายรูปร่างโมเลกุลและไอออนโคเวเลนต์1. ต้องทราบเวเลนต์อิเล็กตรอนแต่ละอะตอม หรือทราบเลขอะตอมของธาตุ แล้วจัดเรียงอิเล็กตรอนในระดับพลังงานต่าง ๆ ทำให้ทราบเวเลนต์อิเล็กตรอน
2. ต้องทราบสูตรเคมี ของสารที่จะทำนายรูปร่างโมเลกุล
3. นำข้อมูลข้อ 1. และข้อ 2. มาเขียนสูตรโครงสร้างแบบจุด หรือสูตรโครงสร้างแบบลิวอิส ตามโมเลกุลหรือไอออนของสารนั้น
4. พิจารณาดูที่อะตอมกลางของธาตุของสูตรโครงสร้างที่เขียนขึ้น ว่ามีการจัดเรียงอิเล็กตรอนคู่ร่วมพันธะและอิเล็กตรอนคู่โดดเดี่ยว ตลอดจนจำนวนพันธะว่าเป็นอย่างไร เข้าข่ายลักษณะรูปร่างแบบไหนก็ทำนายเป็นรูปร่างโมเลกุลหรือไอออนแบบนั้น
ข้อสังเกตการทำนายรูปร่างของสารโคเวเลนต์ไม่ควร เขียนสูตรโครงสร้างแบบเส้น เพราะอิเล็กตรอนคู่โดดเดี่ยวจะไม่ปรากฏ ซึ่งจะทำให้ทำนายรูปร่างของสารโคเวเลนต์ผิดได้
ตัวอย่างจงทำนายรูปร่างของสารโคเวเลนต์ของสารต่อไปนี้
ก. Cl2O       ข. COCl2
ค. ClO3-      ง. PO43-
วิธีทำในแต่ละข้อ ทราบสูตรเคมี นอกจากนั้นยังต้องทราบเวเลนต์อิเล็กตรอนของแต่ละธาตุ คือ C , P , O และ Cl มีเวเลนต์อิเล็กตรอนเป็น 4 , 5 , 6 และ 7 ตามลำดับ
มุมระหว่างพันธะของโมเลกุลโคเวเลนต์       มุมระหว่างพันธะของโมเลกุลโคเวเลนต์ โดยทั่วไปขึ้นอยู่กับจำนวนอิเล็กตรอนคู่โดดเดี่ยวรออบอะตอมกลางเป็นเกณฑ์ นอกจากนั้นยังขึ้นอยู่กับรูปร่างโมเลกุล จำนวนพันธะรอบอะตอมกลางในโมเลกุล จำนวนอิเล็กตรอนคู่ร่วมพันธะ และค่าอิเล็กโตรเนกาติวิตีของธาตุ
หลักการพิจารณามุมระหว่างพันธะของโมเลกุลโคเวเลนต์
1. โมเลกุลโคเวเลนต์ใด ๆ ถ้าอะตอมกลางมีอิเล็กตรอนคู่โดดเดี่ยวไม่เท่ากัน โมเลกุลใดอะตอมกลางมีอิเล็กตรอนคู่โดดเดี่ยวมาก จะผลักกันมากทำให้มุมระหว่างพันธะแคบ เช่น
O อะตอมกลางในน้ำ (H2O) มีอิเล็กตรอนคู่โดดเดี่ยวมากกว่า น้ำจึงมีมุมระหว่างพันธะแคบกว่า NH3ซึ่ง N อะตอมกลาง ใน NH3มีอิเล็กตรอนคู่โดดเดี่ยวน้อยกว่า
O อะตอมกลางในน้ำ (H2O) มีอิเล็กตรอนคู่โดดเดี่ยวมากกว่า S อะตอมกลางใน SO2ดังนั้น มุมระหว่างพันธะใน H2O แคบกว่า มุมระหว่างพันธะใน SO2
2. โมเลกุลโคเวเลนต์ใด ๆ ถ้าอะตอมกลางไม่มีอิเล็กตรอน มีแต่อิเล็กตรอนคู่ร่วมพันธะรอบอะตอมกลาง มุมระหว่างพันธะขึ้นกับจำนวนพันธะรอบอะตอมกลาง กล่าวคือ โมเลกุลใดมีจำนวนพันธะมากมุมจะแคบกว่าโมเลกุลที่มีจำนวนพันธะน้อย เช่น
โมเลกุลของสารที่มีอิเล็กตรอนคู่โดดเดี่ยวรอบอะตอมกลาง เรียงลำดับจำนวนพันธะรอบอะตอมกลางจากมากไปน้อย คือ SF6> CCl4> BCl3> BeCl2
เรียงลำดับมุมระหว่างพันธะจากน้อยไปมากคือ SF6< CCl4< BCl3< BeCl2
อนึ่งโมเลกุลที่มีรูปร่างเป็นพิระมิดคู่ฐานสามเหลี่ยม เช่น PCl5
เนื่องจากโมเลกุลที่มีรูปร่าง พิระมิดคู่ฐานสามเหลี่ยมมีค่ามุมหลายค่า คือ มุมระหว่างพันธะที่ฐานเป็น 1200และที่แกนตั้งฉากกับฐานเป็น 900ดังนั้นจึงไม่ควรมาเปรียบเทียบ มุมระหว่างพันธะ กับโมเลกุลโคเวเลนต์อื่น
3. โมเลกุลโคเวเลนต์ใด ๆ ที่มีรูปร่างเหมือนกัน แต่เป็นสารต่างชนิดกัน และอะตอมกลางไม่มีอิเล็กตรอนคู่โดดเดี่ยวเหลือ มีพันธะรอบอะตอมกลางในโมเลกุลเดียวกันเหมือนกันหมด โมเลกุลของสารเหล่านั้นจะมีมุมระหว่างพันธะเท่ากันเสมอ เช่น โมเลกุล CH4, CCl4, และ SiCl4
ทุกโมเลกุลมีรูปร่างเป็นทรงสี่หน้าเหมือนกันและอะตอมไม่มีอิเล็กตรอนคู่โดดเดี่ยวเหลือ
ดังนั้น มุมระหว่างพันธะในทุกโมเลกุลจึงกางเท่ากันคือ 109.50
โมเลกุลของสารบางชนิด รูปร่างเหมือนกันหมด และอะตอมกลางต่างไม่มีอิเล็กตรอนคู่โดดเดี่ยว แต่พันธะรอบอะตอมกลางในโมเลกุลเดียวกันจะเหมือนกันหรือต่างกันก็ได้ มุมระหว่างพันธะของสารเหล่านั้นเท่ากันเสมอ เช่น โมเลกุลของสารที่มีรูปร่างเป็น เส้นตรง ได้แก่ โมเลกุลของ BeCl2, HCN , CO2, Cl - Be - Cl , H - C N , O = C = O
4. โมเลกุลโคเวเลนต์ที่มีรูปร่างเหมือนกัน แต่สารต่างชนิดกัน และอะตอมกลางต่างเหลืออิเล็กตรอนคู่โดดเดี่ยวเท่ากัน โมเลกุลของสารเหล่านั้นจะมีมุมระหว่างพันธะต่างกันเสมอ แต่มุมระหว่างพันธะในแต่ละโมเลกุลจะกางเท่าไรนั้นขึ้นอยู่กับอิเล็กตรอนคู่ร่วมพันธะว่าอยู่ห่างจากอะตอมกลางแค่ไหน ถ้าใกล้อะตอมกลางจะผลักกันมากต้านไม่ให้อิเล็กตรอนคู่โดดเดี่ยวผลักลงได้มาก ทำให้มุมกว้างกว่า แต่ถ้าไกลอะตอมกลางมากจะผลักกันน้อย จึงต้านแรงผลักลงของอิเล็กตรอนคู่โดดเดี่ยวได้น้อย ทำให้มุมแคบลง อย่างไรก็ตามการพิจารณาว่าอิเล็กตรอนคู่ร่วมพันธะอยู่ใกล้ไกลอะตอมกลางแค่ไหนนั้นจำเป็นต้องใช้ค่าอิเล็กโตรเนกาติวิตีของธาตุเป็นเกณฑ์ เช่น
พิจารณาโมเลกุล H2S และ H2O ซึ่งต่างก็มีรูปร่างเหมือนกัน คือเป็นมุมงอ แต่เนื่องจากอะตอมกลางมีอิเล็กตรอนคู่โดดเดี่ยวเหลือ มุมระหว่างพันธะของโมเลกุลของสารทั้งสองเป็นดังนี้
มุมH - O - H กาง 1050มุม H - S -H กาง 93.30
จะเห็นได้ว่ามุม H - O - H ของ H2O กางกว้างกว่ามุม H - S -H ของ H2S เพราะขนาดอะตอม S และ O ต่างกัน และความแตกต่างระหว่างค่าอิเล็กโตรเนกาติวิตีของ O กับ H มากกว่า S กับ H ทำให้กลุ่มหมอกอิเล็กตรอนคู่ร่วมพันธะในโมเลกุลของ H2O อยู่ใกล้ O ซึ่งเป็นอะตอมกลาง จึงออกแรงผลักกันมากกว่าอิเล็กตรอนคู่ร่วมพันธะในโมเลกุลของ H2S ดังนั้นมุมระหว่างพันธะใน H2O จึงมีขนาดใหญ่กว่ามุมใน H2S
พิจารณาโมเลกุล NH3­และ NF3ซึ่งต่างก็มีรูปร่างเหมือนกัน คือเป็น พีระมิดฐานสามเหลี่ยมแต่เนื่องจากอะตอมกลางมีอิเล็กตรอนคู่โดดเดี่ยวเหลือ มุมระหว่างพันธะของโมเลกุลของสารทั้งสองเป็นดังนี้
มุม H - N - H กาง 1070มุม F - N - F กาง 1020
จะเห็นได้ว่ามุม H - N - H ของ NH3กางกว้างกว่ามุม F - N - F ของ NF3เพราะ F ในโมเลกุล NF3ซึ่งมีค่าอิเล็กโตรเนกาติวิตีสูงที่สุด ซึ่งจะดึงดูดอิเล็กตรอนคู่ร่วมพันธะได้มาก ทำให้กลุ่มหมอกอิเล็กตรอนคู่ร่วมพันธะในโมเลกุลของ NF3อยู่ใกล้ F จึงเกิดแรงผลักน้อย ส่วน NH3มี N เป็นอะตอมกลางมีค่าอิเล็กโตรเนกาติวิตีสูงกว่า H จึงดึงดูดกลุ่มหมอกอิเล็กตรอนคู่ร่วมพันธะในโมเลกุล NH3เข้ามาใกล้ N ทำให้เกิดแรงผลักมาก ดังนั้นมุมระหว่างพันธะใน NH3จึงมีขนาดใหญ่กว่ามุมใน NF3
สรุป- โมเลกุลโคเวเลนต์ที่มีรูปร่างเหมือนกัน และอะตอมกลางมีอิเล็กตรอนคู่โดดเดี่ยวเท่ากัน จะมีมุมระหว่างพันธะต่างกัน พิจารณาได้ดังนี้
- มุมระหว่างพันธะพิจารณาที่ระยะห่างของอิเล็กตรอนคู่ร่วมพันธะเป็นเกณฑ์ กล่าวคือ ถ้าอิเล็กตรอนคู่ร่วมพันธะอยู่ห่างอะตอมมากมุมแคบ และอิเล็กตรอนคู่ร่วมพันธะอยู่ใกล้อะตอมกลางมุมกว้าง
- มุมระหว่างพันธะเปลี่ยนแปลงตามค่า EN ของอะตอมกลางของธาตุที่ต่างกัน แต่ละอะตอมที่ล้อมรอบอะตอมกลางเหมือนกัน
- มุมระหว่างพันธะเปลี่ยนกลับกับค่า EN ของอะตอมที่ล้อมรอบอะตอมกลางที่ต่างกัน แต่อะตอมกลางเหมือนกัน
สภาพขั้วของโมเลกุล       ในพันธะโคเวเลนต์ อิเล็กตรอนคู่ร่วมพันธะ จะเคลื่อนที่อยู่ระหว่าง อะตอมทั้งสอง ถ้าพบว่าอิเล็กตรอนคู่ร่วมพันธะระหว่างอะตอมคู่ใด เคลื่อนที่อยู่ตรงกลางระหว่างอะตอมพอดี แสดงว่าอะตอมคู่นั้นมีความสามารถในการดึงดูดอิเล็กตรอนคู่ร่วมพันธะเท่ากัน แต่ถ้าพบว่า อิเล็กตรอนคู่ร่วมพันธะ เคลื่อนที่อยู่ใกล้อะตอมใดอะตอมหนึ่ง มากกว่าอีกอะตอมหนึ่ง แสดงว่าอะตอมคู่นั้น มีความสามารถในการดึงดูดอิเล็กตรอนคู่ร่วมพันธะไม่เท่ากัน ดังภาพ
(ก) อิเล็กตรอนถูกดึงดูดเท่า ๆ กัน
ค่าที่บอกให้ทราบถึงความสามารถในการดึงดูดอิเล็กตรอนของธาตุที่สร้างพันธะกันเป็นสารประกอบ เรียกว่าอิเล็กโทรเนกาติวิตี(Electronegativity)ซึ่งขึ้นอยู่กับจำนวนประจุในนิวเคลียส และระยะระหว่างเวเลนต์อิเล็กตรอนกับนิวเคลียส
ธาตุที่มีจำนวนประจุในนิวเคลียสมาก แต่มีระยะระหว่างเวเลนต์อิเล็กตรอนกับนิวเคลียสห่างกันน้อยจะมีค่าอิเล็กโทรเนกาติวิตีสูงกว่าธาตุที่มีระยะระหว่างเวเลนต์อิเล็กตรอนกับนิวเคลียสห่างกันมาก
อะตอมที่มีค่าอิเล็กโทรเนกาติวิตีสูง มีแนวโน้มที่จะแสดงอำนาจไฟฟ้าลบ
อะตอมที่มีค่าอิเล็กโทรเนกาติวิตีต่ำ มีแนวโน้มที่จะแสดงอำนาจไฟฟ้าบวก
ลักษณะสำคัญของพันธะโคเวเลนต์ไม่มีขั้ว
1. เป็นพันธะโคเวเลนต์ที่เกิดกับคู่อะตอมของธาตุชนิดเดียวกัน
2. เป็นพันธะโคเวเลนต์ที่มีการกระจายอิเล็กตรอนให้แต่ละอะตอมเท่ากัน
3. พันธะโคเวเลนต์ไม่มีขั้วอาจจะเกิดกับพันธะโคเวเลนต์ชนิดพันธะเดี่ยว เช่น Cl - Cl พันธะโคเวเลนต์ชนิดพันธะคู่ เช่น O = O และพันธะโคเวเลนต์ชนิดพันธะสาม เช่น N N
4. พันธะโคเวเลนต์ที่ไม่มีขั้วเกิดในโมเลกุลใดเรียกว่า โมเลกุลไม่มีขั้ว (non- polar molecule)
ลักษณะสำคัญของพันธะโคเวเลนต์มีขั้ว
1. พันธะโคเวเลนต์มีขั้วเกิดกับคู่อะตอมของธาตุต่างชนิดกันที่มีค่าอิเล็กโทรเนกาติวิตีต่างกัน
2. เป็นพันธะโคเวเลนต์ที่มีการกระจายอิเล็กตรอนในแต่ละอะตอมไม่เท่ากัน
3. พันธะโคเวเลนต์มีขั้วเกิดในโมเลกุลใด โมเลกุลนั้นจะมีขั้วหรืออาจจะไม่มีขั้วก็ได้ แต่ถ้าพันธะโคเวเลนต์มีขั้ว เกิดในโมเลกุลที่มีเพียง 2 อะตอม โมเลกุลนั้นต้องเป็นโมเลกุลมีขั้วเสมอ
เขียนสัญลักษณ์แสดงขั้วของพันธะ
ใช้เครื่องหมาย อ่านว่า เดลตา โดยกำหนดให้ว่า พันธะมีขั้วใดที่อะตอมแสดงอำนาจไฟฟ้าลบ (เป็นอะตอมที่มีค่าอิเล็กโทรเนกาติวิตีสูง) ใช้เครื่องหมายแทนด้วย และพันธะโคเวเลนต์มีขั้วใดที่อะตอมแสดงอำนาจไฟฟ้าบวก (เป็นอะตอมที่มีค่าอิเล็กโทรเนกาติวิตีต่ำ ) ใช้เครื่องหมายแทนด้วย เช่น HF และ ClF
       สภาพขั้วของพันธะโคเวเลนต์ (Polarity of covalent bond) คือ ความแรงของขั้วของพันธะโคเวเลนต์ กล่าวคือ พันธะโคเวเลนต์ใดที่มีอะตอมของธาตุทั้งสองมีผลต่างของค่าอิเล็กโตรเนกาติวิตีมาก ขั้วของพันธะโคเวเลนต์มีขั้วนั้นจะมีอำนาจขั้วไฟฟ้ามาก คือ มีสภาพขั้วแรง ส่วนพันธะโคเวเลนต์ใดที่มีอะตอมของธาตุทั้งสองมีผลต่างของค่าอิเล็กโตรเนกาติวิตีน้อย ขั้วของพันธะโคเวเลนต์มีขั้วนั้นจะมีอำนาจไฟฟ้าน้อย คือ มีสภาพขั้วต่ำ เช่น
HCl H มี EN = 2.20 Cl มี EN = 3.16
ผลต่างของค่า EN ของอะตอม H กับ Cl = 3.16 - 2.20 = 0.96
FCl F มี EN = 3.98 Cl มี EN = 3.16
ผลต่างของค่า EN ของอะตอม F กับ Cl = 3.98 - 3.16 = 0.82
จะเห็นได้ว่าผลต่างของค่า EN ที่เกิดจากธาตุของพันธะ H - Cl มากกว่าของพันธะ F - Cl ดังนั้นขั้วของพันธะ H - Cl มีสภาพขั้วแรงกว่า ขั้วขอพันธะ F - Cl
จากความรู้เรื่องพันธะโเวเลนต์มีขั้ว และพันธะโคเวเลนต์ไม่มีขั้วสามารถนำมาแบ่งประเภทของโมเลกุลโคเวเลนต์ได้เป็นโมเลกุลมีขั้ว และโมเลกุลไม่มีขั้ว แต่โมเลกุลโคเวเลนต์ใดจะเป็นโมเลกุลมีขั้ว หรือ ไม่มีขั้วนั้นสามารถพิจารณาได้ดังนี้
ก. โมเลกุลที่มีเพียง 2 อะตอม
ถ้าโมเลกุลโคเวเลนต์ใดมีเพียง 2 อะตอม และเป็นอะตอมของธาตุชนิดเดียวกัน พันธะที่เกิดขึ้นในโมเลกุลเป็นพันธะโคเวเลนต์ไม่มีขั้ว ดังนั้น โมเลกุลก็จะเป็นโมเลกุลไม่มีขั้วด้วย เช่น H2, O2, N2
ถ้าโมเลกุลโคเวเลนต์ใดมีเพียง 2 อะตอม และเป็นอะตอมของธาตุต่างชนิดกัน พันธะที่เกิดขึ้นในโมเลกุลเป็นพันธะโคเวเลนต์มีขั้ว ดังนั้นโมเลกุลก็จะเป็นโมเลกุลมีขั้วด้วย เช่น HCl , ClF , HI
ข. โมเลกุลที่มี 3 อะตอมหรือมากกว่า
ถ้าโมเลกุลที่เกิดจากพันธะมีขั้ว และมีรูปร่างของโมเลกุลสมมาตร โมเลกุลนั้นจะเป็นโมเลกุลไม่มีขั้ว เพราะมีผลรวมของทิศทางของแรงดึงดูดอิเล็กตรอนทั้งหมดในโมเลกุลเป็นศูนย์ เช่น
โมเลกุลที่มีรูปร่างสมมาตร
       จะต้องเป็นโมเลกุลที่อะตอมกลางไม่มีเวเลนต์อิเล็กตรอนคู่โดดเดี่ยว และอะตอมกลางในโมเลกุลต้องสร้างพันธะชนิดเดียวกันหมด นอกจากนี้โมเลกุลที่มีพันธะชนิดเดียวกัน 4 พันธะแต่อะตอมกลางมีอิเล็กตรอนคู่โดดเดี่ยวเหลือ 2 คู่ ก็จัดเป็นโมเลกุลที่มีรูปร่างสมมาตรชนิดหนึ่ง เช่น มีเทน (CH4) อะตอมกลางคือ C ไม่มีเวเลนต์อิเล็กตรอนคู่โดดเดี่ยว และอะตอม C สร้างพันธะกับอะตอม H ชนิดเดียวกันทั้ง 4 พันธะ คือ C - H ดังนั้น โมเลกุล CH4จึงเป็นโมเลกุลที่มีรูปร่างสมมาตร
       หมายเหตุสำหรับโมเลกุลที่มีพันธะโคเวเลนต์ไม่มีขั้ว และมีพันธะรอบอะตอมตั้งแต่2พันธะขึ้นไป และอะตอมกลางมีอิเล็กตรอนคู่โดดเดี่ยวเหลือยู่อย่างน้อย1คู่ โมเลกุลเหล่านี้ จัดเป็นโมเลกุลมีขั้วเล็กน้อย และสิ่งที่แสดงขั้วของโมเลกุลก็คือ อิเล็กตรอนคู่โดดเดี่ยวที่อะตอมกลาง เช่นO3
โมเลกุลที่มีรูปร่างไม่สมมาตร
       จะต้องเป็นโมเลกุลที่อะตอมกลางมีเวเลนต์อิเล็กตรอนคู่โดดเดี่ยว เช่น โมเลกุลแอมโมเนีย (NH3) มีอะตอม N เป็นอะตอมกลางใช้อิเล็กตรอนสร้างพันธะกับอะตอม H 3 พันธะ แล้วยังเหลือเวเลนต์อิเล็กตรอนคู่โดดเดี่ยว 1 คู่ ดังนั้นโมเลกุลของแอมโมเนียเป็นโมเลกุลที่มีรูปร่างไม่สมมาตร
       นอกจากนี้โมเลกุลที่มีรูปร่างไม่สมมาตรอาจจะหมายถึง โมเลกุลที่อะตอมกลางใช้เวเลนต์อิเล็กตรอนสร้างพันธะทั้งหมด แต่พันธะรอบอะตอมกลางเป็นพันธะต่างชนิดกัน เช่น โมเลกุลคลอโรมีเทน (CH3Cl) มีอะตอมกลางใช้เวเลนต์อิเล็กตรอนสร้างพันธะกับอะตอม H 3 พันธะ และกับอะตอมของ Cl 1 พันธะ อะตอม C มีพันธะทั้งหมด 4 พันธะเป็นพันธะต่างชนิดกัน ดังนั้นโมเลกุลของคลอโรมีเทนเป็นโมเลกุลมีรูปร่างไม่สมมาตร


3.4 พันธะโลหะ
          พันธะโลหะ หมายถึง แรงยึดเหนี่ยวที่ทำให้อะตอมของโลหะ อยู่ด้วยกันในก้อนของโลหะ โดยมีการใช้เวเลนต์อิเล็กตรอนร่วมกันของอะตอมของโลหะ โดยที่เวเลนต์อิเล็กตรอนนี้ไม่ได้เป็นของอะตอมหนึ่งอะตอมใดโดยเฉพาะ เนื่องจากมีการเคลื่อนที่ตลอดเวลา ทุกๆอะตอมของโลหะจะอยู่ติดกันกับอะตอมอื่นๆ ต่อเนื่องกันไม่มีที่สิ้นสุด จึงทำให้โลหะไม่มีสูตรโมเลกุล ที่เขียนกันเป็นสูตรอย่างง่าย หรือสัญลักษณ์ของธาตุนั้นเอง
แสดงการเกิดพันธะโลหะ
•  นำความร้อนได้ดี
•  นำไฟฟ้าได้
•  รีดเป็นแผ่นได้ง่าย
•  ดึงเป็นเส้นยาว ๆ ได้โดยไม่ขาดง่าย
•  จุดหลอมเหลวสูง
•  มีความเป็นมันวาว
•  เชื่อมต่อกันได้
การที่โลหะมีพันธะโลหะจึงทำให้โลหะมีสมบัติทั่วไป ดังนี้
1. โลหะเป็นตัวนำไฟฟ้าที่ดี เพราะอิเล็กตรอนเคลื่อนที่ได้ง่าย
2. โลหะมีจุดหลอมเหลวสูง เพราะเวเลนต์อิเล็กตรอนของอะตอมทั้งหมดในก้อนโลหะยึดอะตอมไว้อย่างเหนียวแน่น
3. โลหะสามารถตีแผ่เป็นแผ่นบางๆได้ เพราะมีกลุ่มเวเลนต์อิเล็กตรอนทำหน้าที่ยึดอนุภาคให้เรียงกันไม่ขาดออกจากกัน
4. โลหะมีผิวเป็นมันวาว เพราะกลุ่มอิเล็กตรอนที่เคลื่อนที่โดยอิสระมีปฏิกิริยาต่อแสง จึงสะท้อนแสงทำให้มองเห็นเป็นมันวาว
5. สถานะปกติเป็นของแข็ง ยกเว้น Hg เป็นของเหลว
6. โลหะนำความร้อนได้ดี เพราะอิเล็กตรอนอิสระเคลื่อนที่ได้ทุกทิศทาง
พันธะโลหะ (Metallic bonding) เป็นพันธะภายในโลหะซึ่งเกี่ยวข้องกับ การเคลื่อนย้าย อิเล็กตรอน อิสระระหว่างแลตทิซของอะตอมโลหะ ดังนั้นพันธะโลหะจึงอาจเปรียบได้กับเกลือที่หลอมเหลว อะตอมของโลหะมีอิเล็กตรอนพิเศษเฉพาะในวงโคจรชั้นนอกของมันเทียบกับคาบ (period) หรือระดับพลังงานของพวกมัน อิเล็กตรอนที่เคลื่อนย้ายเหล่านี้เปรียบได้กับทะเลอิเล็กตรอน(Sea of Electrons) ล้อมรอบแลตทิชขนาดใหญ่ของไอออนบวก
พันธะโลหะเทียบได้กับพันธะโควาเลนต์ที่เป็น นอน-โพลาร์ ที่จะไม่มีในธาตุโลหะบริสุทธ์ หรือมีน้อยมากในโลหะผสม ความแตกต่าง อิเล็กโตรเนกาทิวิตีระหว่างอะตอม ซึ่งมีส่วนในปฏิกิริยาพันธะ และอิเล็กตรอนที่เกี่ยวข้องในปฏิกิริยาจะเคลื่อนย้ายข้ามระหว่างโครงสร้างผลึกของโลหะ พันธะโลหะเขียนสูตรทางเคมีไม่ได้ เพราะไม่ทราบจำนวนอะตอมที่แท้จริง อาจจะมีเป็นล้านๆ อะตอมก็ได้
พันธะโลหะเป็นแรงดึงดูดไฟฟ้าสถิต (electrostatic attraction) ระหว่างอะตอม หรือ ไออนของโลหะ และ อิเล็กตรอนอิสระ(delocalised electrons) นี่คือเหตุว่าทำไมอะตอมหรือชั้นของมันยอมให้มีการเลื่อนไถลไปมาระหว่างกันและกันได้ เป็นผลให้โลหะมีคุณสมบัติที่สามารถตีเป็นแผ่นหรือดึงเป็นเส้นได้

 

ข้อสอบ บทที่ 3 พันธะเคมี

1.จำนวนพันธะโคเวเลนต์ในโมเลกุล CH4 , SiCl4 , NaCl , NH3 เป็นกี่พันธะมีค่าเรียงตามลำดับ  คือข้อใด    ก. 4 , 4 , 0 , 3     ข. 6 , 3 , 1 , 0   ...